ترجمه فارسی توضیحات (ترجمه ماشینی)
تفکر تصویری در ریاضیات: یک مطالعه معرفت شناختی
تفکر بصری – تخیل بصری یا ادراک نمودارها و آرایههای نمادها و عملیات ذهنی روی آنها – در ریاضیات وجود دارد. آیا این تفکر بصری صرفاً یک کمک روانشناختی است که درک چیزهایی را که با وسایل دیگر جمع آوری می شود تسهیل می کند؟ یا کارکردهای معرفتی نیز دارد، به عنوان وسیله ای برای کشف، فهم و حتی اثبات؟ مارکوس جیاکینتو با بررسی انواع مختلف بازنمایی بصری در ریاضیات و روشهای متنوعی که در آنها استفاده میشود، استدلال میکند که تفکر بصری در ریاضیات به ندرت فقط یک کمک اضافی است. معمولاً ارزش معرفتی دارد، اغلب به عنوان وسیله ای برای کشف. جیاکینتو با استفاده از کار فلسفی در مورد ماهیت مفاهیم و از مطالعات تجربی ادراک بصری، تصویرسازی ذهنی و شناخت عددی، منبع اصلی درک ما از ریاضیات را با استفاده از مثالهایی از هندسه پایه، حساب، جبر و تحلیل واقعی کشف میکند. او نشان می دهد که چگونه می توانیم حقایق کلی انتزاعی را با استفاده از تصاویر خاص تشخیص دهیم، چگونه دانش پیشینی ترکیبی ممکن است، و چگونه ابزارهای بصری می توانند به ما در درک ساختارهای انتزاعی کمک کنند. تفکر بصری در ریاضیات تحقیقات متفکران پیشین از افلاطون تا کانت را در مورد ماهیت و معرفتشناسی باورها و تواناییهای اساسی ریاضی یک فرد، در پرتو جدیدی که توسط علوم شناختی در حال رشد میتابد، باز میگشاید. واضح و مختصر در سراسر، برای محققان و دانشجویان فلسفه، ریاضیات، و روانشناسی، و همچنین هر کسی که علاقه مند به تفکر ریاضی است.
Visual thinking — visual imagination or perception of diagrams and symbol arrays, and mental operations on them — is omnipresent in mathematics. Is this visual thinking merely a psychological aid, facilitating grasp of what is gathered by other means? Or does it also have epistemological functions, as a means of discovery, understanding, and even proof? By examining the many kinds of visual representation in mathematics and the diverse ways in which they are used, Marcus Giaquinto argues that visual thinking in mathematics is rarely just a superfluous aid; it usually has epistemological value, often as a means of discovery. Drawing from philosophical work on the nature of concepts and from empirical studies of visual perception, mental imagery, and numerical cognition, Giaquinto explores a major source of our grasp of mathematics, using examples from basic geometry, arithmetic, algebra, and real analysis. He shows how we can discern abstract general truths by means of specific images, how synthetic a priori knowledge is possible, and how visual means can help us grasp abstract structures. Visual Thinking in Mathematics reopens the investigation of earlier thinkers from Plato to Kant into the nature and epistemology of an individual’s basic mathematical beliefs and abilities, in the new light shed by the maturing cognitive sciences. Clear and concise throughout, it will appeal to scholars and students of philosophy, mathematics, and psychology, as well as anyone with an interest in mathematical thinking.
نقد و بررسیها
هنوز بررسیای ثبت نشده است.